Correlation between Obesity and Seroma Following Modified Radical Mastectomy

Ahmad Kurnia,1 Andri Suhandi,2 Setyawan Budingsih.3

1) Division of Oncology Surgery, 2) Training Program in Surgery, Department of Surgery, Faculty of Medicine, Universitas Indonesia, dr. Cipto Mangunkusumo General Hospital, Jakarta, 3) Department of Community Medicine, Faculty of Medicine, Universitas Indonesia.

Email: ahmadkurnia62@yahoo.com Received: 2/Jan/2016 Accepted: 29/Aug/2016 Published: 20/Oct/2016
http://www.nrjs.ui.ac.id DOI: 10.7454/nrjs.v1i1.2

Abstract

Introduction. Obesity becomes one of concern for surgeon as it provides additional morbidity in breast cancer. It influences the healing process negatively, and increase the complications following mastectomy. The most often found complication is seroma. Its incidence in obese is found higher than non-obese patient. Studies evaluating the correlation between obesity and seroma showed controversy. Hence, we run a study aimed to find out such a correlation in our characteristics.

Method. We conducted cross sectional study. All patients treated with modified radical mastectomy (MRM) during period of 2013 to 2014 were included. Subject characteristics were recorded, including age, body mass index (BMI). Bilateral breast malignancy, diabetes mellitus and hypertension were excluded. Drain production and infection, and length of stay was recorded. Kolmogorov Smirnov test is used to find out normal distribution. In normal distribution, Pearson test or Spearman’s is used to find out correlation.

Results. Out of 72 samples underwent MRM and drainage, there were 67 enrolled. The mean age was found of 48.5±8.5 years, and mean BMI of 25.43 kg/m² ± 4.08. Length of stay ranged of 3–8 days and mean total seroma production was found of 502.3 mL ± 207.8. We found moderate positive linear correlation between obesity and seroma (r = 0.581; p <0.01; r² = 0.338) rolled of 33.8% and strong positive linear correlation between seroma and length of stay (r = 0.581; p <0.01; r² = 0.542) rolled of 52.4%.

Conclusion. We found positive linear correlation between seroma and obesity, and positive linear correlation between seroma and length of stay.

Keywords: seroma, obesity, modified radical mastectomy

Introduction

Obesity is a common health problem in the modern era. Of 35% adults population worldwide encountered overweight, and 12% referred to obesity.1,2 In Indonesia, the prevalence of obesity in female in 2013 is about 32.9%, increased up by15.5% compared to 2010.3 This obesity was found to be one of risk factor in breast cancer, particularly those in post menopause period.4 Furthermore, it is known that obesity found to be correlated with poor prognosis, delayed healing and postoperative complication.5-7 This indicate the magnitude of problem since breast cancer referred to the main contributor to mortality with incidence of 38 per 100,000 women, meanwhile in Indonesia there were 26 per 100,000 women reported.8

Surgery remain the first of choice in treatment of breast cancer; for those who met operability criteria. Modified radical mastectomy (MRM) is one of modality,9 and total seroma following mastectomy is then a great deal of problem found. As the natural process of healing, increase of capillary permeability and fluid shifts let the accumulation of serous fluid in interstitial space with consequent seroma formation.9,10-12 Postoperative seroma is a common encountered problem following mastectomy.13 The incidence is varying about 10–85%, and found to be subsided in days or weeks.13-14 Nevertheless, the incidence of seroma in obesity was found to be increased up. The only explanation for this is that fluid accumulation is complimented by alteration in the lymphatic system.9,11,15-17 Drain placement postoperatively is then the option to let the fluid out, which is aimed to reduce the negative effect of accumulation and seroma production.13,18,19 Indeed, this seroma production referred to multifactorial, and obesity is the one, and of course the use of drain itself.18 However, drain tube as a foreign body induces the inflammatory process with exudation. Thus, long term use of drain let the production of seroma turns up. Patient’s discomfort, issue of pain, and length of stay as well as cost will increase up, consequently.19,20 Drain placement following MRM contributes to hospital stay since drain tube should be removed prior to patient discharge.19 Obesity which is increased of body mass index (BMI) indeed is thought to be correlated with drain production. Thus, high BMI referred as a risk factor in the development of postmastectomy seroma.18,20 Studies conducted shows controversy.21 Hence, we run a study to find out such correlation in our patients with certain characteristics.

Method

We run a study in Department of Surgery, RSUPN dr. Cipto Mangunkusumo. Target population is women who diagnosed as unilateral breast cancer following MRM, and affordable population is women who diagnosed as unilateral breast cancer and treated with MRM followed by drain placement in RSUPN dr. Cipto Mangunkusumo during period of 2013–2014. Bilateral breast cancer, diabetic and hypertensive patients were excluded. Body weight and height is recorded in measuring BMI as independent variable; so, does drain production and length of stay, both as dependent variable. Data is processed using SPSS ver. 20.0. We presented subject characteristic descriptively. We preceded distribution test using normality test of Kolmogorov Smirnov as n values >50 with p = 0.05. If p value >0.05, then the distribution referred to normal, and data is...
represented in mean ad standard deviation (± 2 SD). If p value of <0.05, then the distribution is abnormal, and data is represented in median and range. Correlation of BMI value (numerical) and total seroma (numerical), and total seroma (numerical) and length of stay (numerical) are subjected to Pearson correlation test if a variable normally distributed and linearity condition is met. If variables found distributed abnormally, then transformation is preceded. Hypothetical test to be used is depend on the value of transformation. If following transformation procedure then the variable is distributed normally, and the criteria of linearity is met, we proceeded the correlation test of Pearson. In contrast, if the variables distributed abnormally, then Spearman test is to be used. Pursers, when linearity criteria are not met, the correlation test is not to be preceded. In this case, comparative test is should be carried out first through variables categorization. Ethical committee of FMUI and research bureau of RSUPN dr. Cipto Mangunkusumo approved the study (743/UN2.F1 /ETIK/2015, 7 September 2015).

Results

Out of 78 patients who diagnosed as breast cancer, there were 67 subjects enrolled. Eight subjects were excluded, i.e. four were bilateral, two with conorbid i.e. diabetes mellitus and hypertension, and two because insufficient data. Further, three subjects who’s formerly included were not enrolled in statistical analysis as it found as an outlier during assessment in the distribution test. There were 2 (3%) subjects with underweight, 15 (22.4%) normal, 13 (19.4%) overweight at risk, 26 (38.8%) categorized as obese I and 11 (16.4%) categorized as obese II. Subject characteristics are seen in table 1. Correlation test of BMI showed a normal distribution (p = 0.2) and so does total seroma production (p = 0.2), but we found the distribution of length of stay showed abnormal one (p = 0.000).

Since both of numerical variables showing a normal distribution, in assessment of the correlation test between obesity and total seroma, we used Pearson method. The linearity of correlation between BMI and total seroma is seen in table 1. The coefficient determinant (R²) in this study was 0.338, suggesting a moderate correlation. Further, we found the correlation between BMI and total seroma was significant (p = 0.000) with Pearson correlation of 0.581 (see figure 1). Whilst, in assessment of the correlation between length of stay and total seroma we found the coefficient determinant (R²) in this study was 0.542, suggesting a strong correlation. The correlation was found significant (p = 0.000) with Pearson correlation of 0.736.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean (±SD)</th>
<th>Median</th>
<th>Min–Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>48.5 ±0.5</td>
<td>49</td>
<td>33-69</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>61.5 ±0.5</td>
<td>60</td>
<td>40-90</td>
</tr>
<tr>
<td>Height (m)</td>
<td>1.55 ±0.06</td>
<td>1.55</td>
<td>1.43-1.77</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>25.43 ±0.4</td>
<td>25.39</td>
<td>16.65-35.59</td>
</tr>
<tr>
<td>Length of stay (days)</td>
<td>4.6 ±1.5</td>
<td>4</td>
<td>3-8</td>
</tr>
<tr>
<td>Total seroma (mL)</td>
<td>502.3±207.8</td>
<td>504</td>
<td>134-990</td>
</tr>
<tr>
<td>Daily seroma (mL)</td>
<td>109.6±32.1</td>
<td>106.7</td>
<td>44.7-170.8</td>
</tr>
</tbody>
</table>

BMI body mass index.

Discussion

We enrolled 67 subjects who met the inclusion criteria as we excluded 8 of 78 total population, and three subjects whose were outlier to the distribution. These 67 subjects were found more than the minimal (58) calculated required samples. Those who excluded were subjects that realized to be the confounding factors in seroma production. Although in some literatures were showed and suggested that these entities have no correlation with seroma formation, anyhow, we decided not to enroll. We were also decided not to be distracted to obtain further information about diabetes and hypertension as the risk factor.

In the study we found mean age of subjects was like those reported by Maria and colleagues (42.56 years ± 8.77 ranged of 30-57 years) and differed to those reported by Banerjee and colleagues (median age of subjects of 62.38 years ranged of 36-90 years). This difference might be related to different subject of population. Banerjee and colleagues investigated the subjects in a well-developed country with high life expectancy compared to developing country as Indonesia. However, reported data shows different incidence of breast cancer in different center.

The mean BMI of subjects in the study somehow more less like the works of Banerjee and colleagues (26.83 kg/m² ±4.71) and Maria and colleagues (24.7 kg/m² ± 4.2). In our study, the subjects was predominantly categorized as obese I with BMI of 25–29.9 kg/m² (38.8%), overweight at risk (19.4%) and obese II (16.4%). This data showed that obese subjects are at risk for breast cancer.
Obesity, which is assessed through BMI, is a predisposing factor and contributes to formation of seroma. Further, it contributes to length of stay of subjects with breast cancer underwent mastectomy. Accumulated serous fluid requires repetitive paracentesis and aspiration to remove seroma out. This is somehow unfavorable since it injured compromised flap, painful, infection susceptible, and induces morbidity. In contrast, drain placement induces pain, subjects’ discomfort, activity limitation particularly to emerge postoperative shoulder exercise, and lead to delayed administration of adjuvant therapy. These will let a longer hospital stay.10,18,20,39

We conclude that obesity has a moderate positive correlation to total seroma and seroma formation has a strong positive correlation with length of stay in breast cancer with obesity. Hence, obese subjects with breast cancer should be informed, special attention is to be paid to the possibility of seroma formation, the use of drain and long hospital stay. For surgeons, awareness to such problems concern to seroma, a good surgical technique (meticulous dissection, gentle hemostasis, anchor sutures), and the use of compressing external bandage to diminish dead space and seroma production are clues to achieve a successful treatment.

References